Upgraded Network Master Pro MT1000A Synchronous Measurement Function for 5G Mobile Network I&M

Anritsu Corporation has announced an upgraded synchronous measurement function for the company’s Network Master Pro MT1000A, the industry’s smallest- in-class tester supporting mobile networks up to 100 Gbps. Fifth generation (5G) networks are expected to support increasing future numbers of applications and services, such as hi-definition video streaming, autonomous driving, IoT sensing, smart factories, etc. By upgrading this MT1000A test function, Anritsu hopes to facilitate construction of time-synchronous infrastructure, a key technology supporting 5G networks.

New Product Outline

The MU100090B is a GNSS disciplined oscillator supporting GPS, Galileo, GLONASS, Beidou and QZSS. It receives signals from each of these GNSS to output a UTC-traceable reference time signal as well as 10-MHz signals as a time-synchronous, high-accuracy reference timing supplied to the portable MT1000A, supporting SyncE Wander and PTP tests up to 25 Gbps for measuring network time synchronization.

Furthermore, multiple MT1000A testers at various remote sites can be operated and monitored from the central office using the Site Over Remote Access MX109020A (SORA) software to help quickly pinpoint synchronization problems.

Development Background

Deployment of 5G communications networks is spreading due to the advantages of ultra-high speeds, high reliability, low latency, and multiple simultaneous connections in various scenarios. The millimeter-wave (mmWave) band used by 5G technology employs the TDD time-division duplexing technology for managing timing of uplink and downlink signals.

This technology requires that the time at all base stations is precisely synchronized, otherwise interference will cause degraded communications quality. Moreover, achieving a “smart” IoT-based society will require cooperation between devices exchanging position information acquired using OTDOA positioning technology, which is ideal for IoT applications, but high-accuracy position measurement is impossible without high-accuracy time synchronization between base stations.

Base stations can be synchronized using wired-network technologies called SyncE and PTP, which require both measurement of the network time-synchronization performance when installing and maintaining a cell site, along with guaranteed network performance by the network operator.

Moreover, the O-RAN Alliance, which is a mainstream promoter of base-station multivendor, increasingly requires tests of overall mobile network time-synchronization performance to assure interconnectivity.

Time-synchronization quality is indicated by drift from coordinated universal time (UTC), so precise time-synchronization measurement requires expensive infrastructure to acquire UTC with high accuracy. This can be a challenge at installation and maintenance of many cell sites.

Anritsu has developed many test instruments for measuring the jitter and wander of transport networks since the SDH/SONET era. Adding this new High Performance GNSS Disciplined Oscillator MU100090B to the line of modules for the portable, battery-operated MT1000A will help simplify on-site I&M time-synchronization tests.


Check Also

Are your metrology systems 21 CFR Part 11 compliant?

According to the US Food and Drug Administration (FDA), 7,252 medical products were recalled in …

Meteor Communications wins Scottish Water monitoring contract

Meteor Communications has been awarded a multi-year shared framework agreement by Scottish Water for the …