Ultra-high-speed sensor detects structural damage in real-time

Optical fibre sensing is a promising technology for monitoring the condition of structures that may suffer from aging degradation and seismic damage.

In particular, distributed strain and temperature sensors based on Brillouin scattering have received much attention due to their high sensitivity and stability. Brillouin optical correlation-domain reflectometry (BOCDR), which operates based on the correlation control of continuous lightwaves, is known to be an intrinsically one-end-access distributed sensing technique with high spatial resolution (< 1 cm). However, the highest sampling rate reported for BOCDR was 19 Hz, resulting in a relatively long total time of distributed measurement (from several tens of seconds to several minutes). To resolve this shortcoming, researchers from Tokyo Institute of Technology and the University of Tokyo have recently succeeded in increasing the sampling rate of BOCDR to 100 kHz, over 5000 times the previous rate, enabling real-time distributed measurement.

In all Brillouin sensors, the strain and temperature dependence of the Brillouin frequency shift (BFS) is exploited to derive strain and temperature. In conventional BOCDR, the BFS is obtained by performing a frequency sweep over the whole Brillouin gain spectrum (BGS) using an electrical spectrum analyser. Thus, the sweep speed of the spectrum analyser limits the sampling rate to 19 Hz. By instead sweeping the frequency spectrum using a voltage-controlled oscillator, the researchers were able to achieve a higher-speed acquisition. However, deriving the BFS from the BGS still limited the sampling rate. To speed up the system further, the researchers converted the BGS into a synchronous sinusoidal waveform using a band-pass filter, allowing the BFS to be expressed as its phase delay. Then, using an exclusive-OR logic gate and a low-pass filter, the phase delay was subsequently converted into a voltage, which was directly measured.

The researchers experimentally verified a strain sampling rate of up to 100 kHz by detecting a 1-kHz dynamic strain applied at an arbitrary position along the fibre. When distributed measurements were performed at 100 points with 10 times averaging, a repetition rate of 100 Hz was verified by tracking a mechanical wave propagating along the fibre. Thus, the researchers were the first to achieve one-end-access real-time distributed Brillouin sensing.

The sensing system is anticipated to be of benefit in monitoring the health of various structures. The researchers say the system also has potential applications in robotics, acting as electronic “nerves” for detecting touch, distortion, and temperature change.

Check Also

Allegro announces industry’s smallest sine/cosine 3D position sensor

Allegro MicroSystems, a global leader in sensing and power solutions for motion control and energy-efficient …

Contrinex inductive and fork sensors ‘keep the lid on’ ketchup bottles

Some of the most compelling examples of automation are in food packaging, where the extensive …